Перевод величин из децибелов в абсолютные значения и мощность. Online калькулятор разы и проценты в децибелы Перевод микровольт в децибелы калькулятор

Подписаться
Вступай в сообщество «mobcredit.ru»!
ВКонтакте:

Логарифмическая шкала и логарифмические единицы часто используется в тех случаях, когда необходимо измерить некоторую величину, изменяющуюся в большом диапазоне. Примерами таких величин являются звуковое давление, магнитуда землетрясений, световой поток, различные частотно-зависимые величины, используемые в музыке (музыкальные интервалы), антенно-фидерных устройствах, электронике и акустике. Логарифмические единицы позволяют выразить отношения величин, изменяющихся в очень большом диапазоне с помощью удобных небольших чисел примерно так, как это делается при экспоненциальной записи чисел, когда любое очень большое или очень малое число может быть представлено в краткой форме в виде мантиссы и порядка. Например, мощность звука, издаваемого при запуске ракеты-носителя Сатурн, составляла 100 000 000 Вт или 200 дБ SWL. В то же время, мощность звука очень тихого разговора составляет 0,000000001 Вт или 30 дБ SWL (измерена в децибелах относительно мощности звука 10⁻¹² ватт, см. ниже).

Правда, удобные единицы? Но, как оказывается, они удобны далеко не для всех! Можно сказать, что большинство людей, плохо разбирающихся в физике, математике и технике, не понимают логарифмических единиц, таких как децибелы. Некоторые даже считают, что логарифмические величины относятся не к современной цифровой технике, а к тем временам, когда для инженерных расчетов использовали логарифмическую линейку!

Немного истории

Изобретение логарифмов упростило вычисления, так как они позволили заменить умножение сложением, которое выполняется значительно быстрее, чем умножение. Среди ученых, которые внесли значительный вклад в развитие теории логарифмов, можно отметить шотландского математика, физика и астронома Джона Непера, опубликовавшего в 1619 г. сочинение с описанием натуральных логарифмов, которые значительно упрощали вычисления.

Важным инструментом для практического использования логарифмов были таблицы логарифмов. Первая такая таблица была составлена английским математиком Генри Бригсом в 1617 году. Основываясь на работах Джона Непера и других ученых, английский математик и священник англиканской церкви Уильям Отред изобрел логарифмическую линейку, которая использовалась инженерами и учеными (включая и автора этой статьи) в течение последующих 350 лет, пока в середине семидесятых прошлого века ее не заменили карманные калькуляторы.

Определение

Логарифм - операция обратная возведению в степень. Число y является логарифмом числа x по основанию b

если соблюдается равенство

Иными словами, логарифм данного числа - это показатель степени, в которую нужно возвести число, называемое основанием, чтобы получить данное число. Можно сказать проще. Логарифм - это ответ на вопрос «Сколько раз нужно умножить одно число само на себя, чтобы получить другое число». Например, сколько раз нужно умножить число 5 само на себя, чтобы получить 25? Ответом является 2, то есть

По приведенному выше определению

Классификация логарифмических единиц

Логарифмические единицы широко используются в науке, технике и даже в таких ежедневных занятиях, как фотография и музыка. Имеются абсолютные и относительные логарифмические единицы.

С помощью абсолютных логарифмических единиц выражают физические величины, которые сравниваются с определенным фиксированным значением. Например, дБм (децибел милливатт) - это абсолютная логарифмическая единица мощности, в которой мощность сравнивается с 1 мВт. Отметим, что 0 дБм = 1 мВт. Абсолютные единицы прекрасно подходят для описания одиночной величины , а не соотношения двух величин. Абсолютные логарифмические единицы измерения физических величин всегда можно перевести в другие, обычные единицы измерения этих величин. Например, 20 дБм = 100 мВт или 40 дБВ = 100 В.

С другой стороны, относительные логарифмические единицы используются для выражения физической величины в форме отношения или пропорции других физических величин, например, в электронике, где для этого используют децибел (дБ). Логарифмические единицы хорошо подходят для описания, например, коэффициента передачи электронных систем, то есть соотношения между выходным и входным сигналами.

Следует отметить, что все относительные логарифмические единицы являются безразмерными. Децибелы, неперы и другие названия - просто особые наименования, которые используются совместно с безразмерными единицами. Отметим также, что децибел часто используется с различными суффиксами, которые обычно присоединяются к сокращению дБ с помощью дефиса, например дБ-Гц, пробела, как в единице dB SPL, без какого-либо символа между дБ и суффиксом, как в дБм, или заключаются в кавычки, как в единице дБ(м²). Обо всех этих единицах мы поговорим ниже в этой статье.

Следует также отметить, что преобразование логарифмических единиц в обычные единицы часто бывает невозможным. Впрочем, это бывает только в тех случаях, когда говорят об отношениях. Например, коэффициент передачи усилителя по напряжению 20 дБ можно преобразовать только в «разы», то есть в безразмерную величину - он будет равным 10. В то же время, измеренное в децибелах звуковое давление можно перевести в паскали, так как звуковое давление измеряется в абсолютных логарифмических единицах, то есть, относительно опорного значения. Отметим, что коэффициент передачи в децибелах - тоже безразмерная величина, хотя и имеет название. Полная путаница получается! Но мы попробуем разобраться.

Логарифмические единицы измерения амплитуды и мощности

Мощность . Известно, что мощность пропорциональна квадрату амплитуды. Например, электрическая мощность, определяемая выражением P = U²/R. То есть, изменение амплитуды в 10 раз сопровождается изменением мощности в 100 раз. Соотношение двух величин мощности в децибелах определяется выражением

10 log₁₀(P₁/P₂) dB

Амплитуда . В связи с тем, что мощность пропорциональна квадрату амплитуды, соотношение двух величин амплитуды в децибелах описывается выражением

20 log₁₀(P₁/P₂) dB.

Примеры относительных логарифмических величин и единиц

  • Общие единицы
    • дБ (децибел) - логарифмическая безразмерная единица, используемая для выражения отношения двух произвольных значений одной и той же физической величины. Например, в электронике децибелы используются для описания усиления сигнала в усилителях или ослабления сигнала в кабелях. Децибел численно равен десятичному логарифму отношения двух физических величин, умноженному на десять для отношения мощностей и умноженному на 20 для отношения амплитуд.
    • Б (бел) - редко используемая логарифмическая безразмерная единица измерения отношения двух одноименных физических величин, равная 10 децибелам.
    • Н (непер) - безразмерная логарифмическая единица измерения отношения двух значений одноименной физической величины. В отличие от децибела, непер определяется как натуральный логарифм для выражения различия между двумя величинами x₁ и x₂ по формуле:

      R = ln(x₁/x₂) = ln(x₁) – ln(x₂)


      Преобразовать Н, Б и дБ можно на странице «Конвертер звука» .
  • Музыка, акустика и электроника
  • s = 1000 ∙ log₁₀(f₂/f₁)

  • Антенная техника. Логарифмическая шкала используется во многих относительных безразмерных единицах для измерения различных физических величин в антенной технике. В таких единицах измерения измеряемый параметр обычно сравниваются с соответствующим параметром стандартного типа антенны.
  • Связь и передача данных
    • дБн или dBc (децибел несущая, отношение по мощности) - безразмерная мощность радиосигнала (уровень излучения) по отношению к уровню излучения на частоте несущей, выраженная в децибелах. Определяется как S дБн = 10 log₁₀(P несущей /P модуляции). Если величина дБн положительная, то мощность модулированного сигнала больше, чем мощность немодулированной несущей. Если же величина дБн отрицательная, то мощность модулированного сигнала меньше мощности немодулированной несущей.
  • Электронная аппаратура звуковоспроизведения и звукозаписи
  • Другие единицы и величины

Примеры абсолютных логарифмических единиц и величин в децибелах с суффиксами и опорными уровнями

  • Мощность, уровень сигнала (абсолютные)
  • Напряжение (абсолютное)
  • Электрическое сопротивление (абсолютное)
    • дБОм, dBohm или dBΩ (децибел ом, амплитудное соотношение) - абсолютное сопротивление в децибелах относительно 1 Ом. Эта единица измерения удобна, если рассматривают большой диапазон сопротивлений. Например, 0 dBΩ = 1 Ω, 6 dBΩ = 2 Ω, 10 dBΩ = 3,16 Ω, 20 dBΩ = 10 Ω, 40 dBΩ = 100 Ω, 100 dBΩ = 100 000 Ω, 160 dBΩ = 100 000 000 Ω и так далее.
  • Акустика (абсолютный уровень звука, звуковое давление или интенсивность звука)
  • Радиолокация . Абсолютные значения по логарифмической шкале используются для измерения радиолокационной отражаемости по сравнению с какой-либо опорной величиной.
    • dBZ или dB(Z) (амплитудное соотношение) - абсолютный коэффициент радиолокационной отражаемости в децибелах относительно минимального облака Z = 1 мм⁶ м⁻³. 1 dBZ = 10 log (z/1 мм⁶ м³). Эта единица показывает количество капель в единице объема и используется метеорологическими радиолокационными станциями (метео-РЛС). Информация, полученная при измерениях в сочетании с другими данными, в частности, результатами анализа поляризации и допплеровского сдвига, позволяют оценить что происходит в атмосфере: идет ли дождь, снег, град, или летит стая насекомых или птиц. Например, 30 dBZ соответствует слабому дождю, а 40 dBZ - умеренному дождю.
    • dBη (амплитудное соотношение) - абсолютный фактор радиолокационной отражаемости объектов в децибелах относительно 1 см²/км³. Эта величина удобна, если нужно измерить радиолокационную отражаемость летающих биологических объектов, таких как птицы, летучие мыши. Метео-РЛС часто используются для наблюдения за подобными биологическими объектами.
    • дБ(м²), dBsm или dB(m²) (децибел квадратный метр, амплитудное соотношение) - абсолютная единица измерения эффективной площади рассеяния цели (ЭПР, англ. radar cross section, RCS) по отношению к квадратному метру. Насекомые и слабо отражающие цели имеют отрицательную эффективную площадь рассеяния, в то время как большие пассажирские самолеты - положительную.
  • Связь и передача данных. Абсолютные логарифмические единицы используются для измерения различных параметров, связанных с частотой, амплитудой и мощностью передаваемых и принимаемых сигналов. Все абсолютные значения в децибелах можно преобразовать в обычные единицы, соответствующие измеряемой величине. Например, уровень мощности шумов в dBrn можно преобразовать непосредственно в милливатты.
  • Другие абсолютные логарифмические единицы. Таких единиц много в разных отраслях науки и техники и здесь мы приведем лишь несколько примеров.
    • Шкала магнитуды землетрясений Рихтера содержит условные логарифмические единицы (используется десятичный логарифм), используемые для оценки силы землетрясения. Согласно этой шкале магнитуда землетрясения определяется как десятичный логарифм отношения амплитуды сейсмических волн к произвольно выбранной очень малой амплитуде, которая представляет магнитуду 0. Каждый шаг шкалы Рихтера соответствует увеличению амплитуды колебаний в 10 раз.
    • dBr (децибел относительно опорного уровня, соотношение по амплитуде или по мощности, задается явным образом) - логарифмическая абсолютная единица измерения какой-либо физической величины, задаваемой в контексте.
    • dBSVL - колебательная скорость частиц в децибелах относительно опорного уровня 5∙10⁻⁸ м/с. Название происходит от англ. sound velocity level - уровень скорости звука. Колебательная скорость частиц среды иначе называется акустической скоростью и определяет скорость, с которой движутся частицы среды при их колебаниях относительно положения равновесия. Опорная величина 5∙10⁻⁸ м/с соответствует колебательной скорости частиц для звука в воздухе.

Вопрос о переводе дБ в дБм и наоборот часто приходится слышать от клиентов, встречать на специализированных форумах. Однако, как бы не хотелось, нельзя перевести мощность в затухание.

Если мощность оптического сигнала измерена в дБм, то для определения затухания A (дБ) необходимо от мощности сигнала на входе в линию отнять мощность сигнала на выходе из нее. Но обо всем этом по порядку.

Оптическая мощность, или мощность оптического излучения - это основополагающий параметр оптического сигнала. Он может быть выражен в привычных нам единицах измерения - Ватт (Вт), милливатт (мВт), микроватт (мкВт). А также логарифмических единицах - дБм.

Затухание оптического сигнала (А) - величина, которая показывает во сколько раз мощность сигнала на выходе линии связи (P вых) меньше мощности сигнала на входе этой линии (Pвх). Затухание выражается в дБ (дециБелл) и может быть определено по следующей формуле:

Рисунок 1 - формула расчета оптического затухания в случае если оптическая мощность выражена в Вт

Немного непривычно, не так ли? Логарифмические линейки и таблицы - уходят в прошлое, по крайней мере для молодых монтажников их давно уже заменил калькулятор. И даже с учетом использования калькулятора - такая формула не сильно удобна. Поэтому, для упрощения расчетов было принято решение перевести единицы измерения мощности в логарифмический формат и таким образом избавиться от логарифмов в формуле:

Рисунок 2 - пересчет мощности из мВт в дБм

Для перевода дБм в Вт и наоборот можно пользоваться также таблицей:

дБм Милливат
0 1,0
1 1,3
2 1,6
3 2,0
4 2,5
5 3,2
6 4
7 5
8 6
9 8
10 10
11 13
12 16
13 20
14 25
15 32

В результате пересчета, формула вычисления оптического затухания (рис 1) превращается в:

Рисунок 3 - перевод дБм в дБ (dBm в dB), взаимозависимость между мощностью и затуханием

Учитывая тот факт, что все известные автору измерители оптической мощности в качестве основной единицы измерения используют дБм, то используя формулу на рис 3 инженер может определить уровень затухания даже в уме. Кроме того, многие приборы имеют функцию установки опорного уровня, благодаря чему пользователю выдается значение потерь сразу в Дб.

В этом случае, измерение затухания оптической линии значительно упрощается, что продемонстрировано на следующем видео.

Измерение затухания оптической линии

Зачастую измерянного значения затухания в дБ - достаточно. Однако для того, чтобы представить во сколько раз уменьшился входной сигнал, можно воспользоваться формулой:

m = 10 (n / 10)

где m - отношение в разах, n - отношение в децибелах

можно также пользоваться следующей таблицей:

Таблица 1 - перевод дБ в разы

дБ Раз дБ Раз дБ Раз
0 1,000 0,9 1,109 9 2,82
0,1 1,012 1 1,122 10 3,16
0,2 1,023 2 1,26 11 3,55
0,3 1,035 3 1,41 12 3,98
0,4 1,047 4 1,58 13 4,47
0,5 1,059 5 1,78 14 5,01
0,6 1,072 6 2,00 15 5,62
0,7 1,084 7 2,24 16 6,31
0,8 1,096 8 2,51 17 7,08

ЧТО ТАКОЕ ДЕЦИБЕЛЫ?

Универсальные логарифмические единицы децибелы широко используются при количественных оценках параметров различных аудио и видео устройств в нашей стране и за рубежом. В радиоэлектронике, в частности, в проводной связи, технике записи и воспроизведения информации децибелы являются универсальной мерой.

Децибел - не физическая величина, а математическое понятие

В электроакустике децибел служит по существу единственной единицей для характеристики различных уровней - интенсивности звука, звукового давления, громкости, а также для оценки эффективности средств борьбы с шумами.

Децибел - специфическая единица измерений, не схожая ни с одной из тех, с которыми приходится встречаться в повседневной практике. Децибел не является официальной единицей в системе единиц СИ, хотя, по решению Генеральной конференции по мерам и весам, допускается его применение без ограничений совместно с СИ, а Международная палата мер и весов рекомендовала включить его в эту систему.

Децибел - не физическая величина, а математическое понятие.

В этом отношении у децибел есть некоторое сходство с процентами. Как и проценты, децибелы безразмерны и служат для сравнения двух одноименных величин, в принципе самых различных, независимо от их природы. Следует отметить, что термин «децибел» всегда связывают только с энергетическими величинами, чаще всего с мощностью и, с некоторыми оговорками, с напряжением и током.

Децибел (русское обозначение - дБ, международное - dB) составляет десятую часть более крупной единицы - бела 1 .

Бел - это десятичный логарифм отношения двух мощностей. Если известны две мощности Р 1 и Р 2 , то их отношение, выраженное в белах, определяется формулой:

Физическая природа сравниваемых мощностей может быть любой - электрической, электромагнитной, акустической, механической, - важно лишь, чтобы обе величины были выражены в одинаковых единицах - ваттах, милливаттах и т. п.

Напомним вкратце, что такое логарифм. Любое положительное 2 число, как целое, так и дробное, можно представить другим числом в определенной степени.

Так, например, если 10 2 = 100, то 10 называют основанием логарифма, а число 2 - логарифмом числа 100 и обозначают log 10 100=2 или lg 100 = 2 (читается так: «логарифм ста при основании десять равен двум»).

Логарифмы с основанием 10 называются десятичными логарифмами и применяются чаще всего. Для чисел, кратных 10, этот логарифм численно равен количеству нулей за единицей, а для остальных чисел вычисляется на калькуляторе или находится по таблицам логарифмов.

Логарифмы с основанием е = 2,718... называются натуральными. В вычислительной технике обычно применяются логарифмы с основанием 2.

Основные свойства логарифмов:

Разумеется, эти свойства справедливы и для десятичных и натуральных логарифмов. Логарифмический способ представления чисел часто оказывается очень удобным, так как позволяет подменять умножение - сложением, деление - вычитанием, возведение в степень умножением, а извлечение корня - делением.

На практике бел оказался слишком крупной величиной, например, любые отношения мощностей в границах от 100 до 1000 укладываются в пределах одного бела - от 2 Б до 3 Б. Поэтому для большей наглядности решили число, показывающее количество бел, умножать на 10 и полученное произведение считать показателем в децибелах, т. е., например, 2 Б = 20 дБ, 4,62 Б = 46,2 дБ и т. д.

Обычно отношение мощностей выражают сразу в децибелах по формуле:

Действия с децибелами не отличаются от операций с логарифмами.

2 дБ = 1 дБ + 1 дБ → 1,259 * 1,259 = 1,585;
3 дБ → 1,259 3 = 1,995;
4 дБ → 2,512;
5 дБ → 3,161;
6 дБ → 3,981;
7 дБ → 5,012;
8 дБ → 6,310;
9 дБ → 7,943;
10 дБ → 10,00.

Знак → означает «соответствует».

Подобным образом можно составить таблицу и для отрицательных значений децибел. Минус 1 дБ характеризует убывание мощности в 1/0,794 = 1,259 раза, т. е. тоже примерно на 26%.

Запомните, что:

⇒ Если Р 2 1 т. е. P 2 /P 1 =1 , то N дБ = 0 , так как lg 1=0 .

⇒ Если P 2 > P l , то число децибел положительно.

⇒ Если Р 2 < P 1 , то децибелы выражаются отрицательными числами.

Положительные децибелы часто называют децибелами усиления. Отрицательные децибелы, как правило, характеризуют потери энергии (в фильтрах, делителях, длинных линиях) и называются децибелами затухания или потерь.

Между децибелами усиления и затухания существует простая зависимость: одинаковому числу децибел с разными знаками соответствуют обратные числа отношений. Если, например, отношению Р 2 1 = 2 → 3 дБ , то –3 дБ → 1/2 , т. е. 1 / Р 2 1 = Р 1 2

⇒ Если Р 2 1 представляет степень десяти, т. е. Р 2 1 = 10 k , где k - любое целое число (положительное или отрицательное), то NдБ = 10k , так как lg 10 k = k .

⇒ Если Р 2 или Р 1 равно нулю, то выражение для NдБ теряет смысл.

И еще одна особенность: кривая, определяющая значения децибел в зависимости от отношений мощностей, вначале быстро растет, затем ее рост замедляется.

Зная число децибел, соответствующих одному отношению мощностей, можно произвести пересчет для другого - близкого или кратного отношения. В частности, для отношений мощностей, различающихся в 10 раз, число децибел отличается на 10 дБ. Эту особенность децибел следует хорошо понять и твердо запомнить - она является одной из основ всей системы

К достоинствам системы децибел относят:

⇒ универсальность, т. е. возможность использования при оценке различных параметров и явлений;

⇒ огромные перепады преобразуемых чисел - от единиц и до миллионов - отображаются в децибелах числами первой сотни;

⇒ натуральные числа, представляющие степени десяти, выражаются в децибелах числами, кратными десяти;

⇒ взаимообратные числа выражаются в децибелах равными числами, но с разными знаками;

⇒ в децибелах могут быть выражены как отвлеченные, так и именованные числа.

К недостаткам системы децибел относят:

⇒ малую наглядность: для преобразования децибел в отношения двух чисел или выполнения обратных действий требуется проведение расчетов;

⇒ отношения мощностей и отношения напряжений (или токов) пересчитываются в децибелы по разным формулам, что иногда ведет к ошибкам и путанице;

⇒ децибелы могут отсчитываться только относительно не равного нулю уровня; абсолютный нуль, например 0 Вт, 0 В, децибелами не выражается.

Зная число децибел, соответствующих одному отношению мощностей, можно произвести пересчет для другого - близкого или кратного отношения. В частности, для отношений мощностей, различающихся в 10 раз, число децибел отличается на 10 дБ. Эту особенность децибел следует хорошо понять и твердо запомнить - она является одной из основ всей системы.

Сравнение двух сигналов путем сопоставления их мощностей не всегда бывает удобным, так как для непосредственного измерения электрической мощности в диапазоне звуковых и радиочастот требуются дорогие и сложные приборы. На практике при работе с аппаратурой гораздо проще измерять не мощность, которая выделяется на нагрузке, а падение напряжения на ней, а в некоторых случаях - протекающий ток.

Зная напряжение или ток и сопротивление нагрузки, легко определить мощность. Если измерения проводятся на одном и том же резисторе, то:

Этими формулами очень часто пользуются практике, но обратите внимание, что если напряжения или токи измеряются на разных нагрузках, эти формулы не работают и следует использовать другие, более сложные зависимости.

Пользуясь приемом, который был использован при составлении таблицы децибел мощности, можно аналогично определить, чему равен 1 дБ отношения напряжений и токов. Положительный децибел будет равен 1,122, а отрицательный децибел будет равен 0,8913, т.е. 1 дБ напряжения или тока характеризует возрастание или убывание этого параметра примерно на 12% по отношению к первоначальному значению.

Формулы выводились в предположении, что сопротивления нагрузок имеют активный характер и между напряжениями или токами нет фазового сдвига. Строго говоря, следовало бы рассматривать общий случай и учитывать для напряжений (токов) наличие угла сдвига по фазе, а для нагрузок не только активное, но полное сопротивление, включая и реактивные составляющие, однако это существенно только на высоких частотах.

Полезно запомнить некоторые часто встречающиеся на практике значения децибел и характеризующие их отношения мощностей и напряжений (токов), приведенные в табл. 1.

Таблица 1. Часто встречающиеся значения децибел мощности и напряжения

Пользуясь этой таблицей и свойствами логарифмов легко подсчитать, чему соответствуют произвольные значения логарифм. Например, 36 дБ мощности можно представить как 30+3+3, что соответствует 1000*2*2 = 4000. Тот же самый результат мы получим, представив 36 как 10+10+10+3+3 → 10*10*10*2*2 = 4000.

СОПОСТАВЛЕНИЕ ДЕЦИБЕЛ С ПРОЦЕНТАМИ

Ранее отмечалось, что понятие децибел имеет некоторое сходство с процентами. Действительно, так как в процентах выражается отношение какого-то числа к другому, условно принятому за сто процентов, отношение этих чисел также можно представить в децибелах при условии, что оба числа характеризуют мощность, напряжение или ток. Для отношения мощностей:

Для отношения напряжений или токов:

Можно также вывести формулы для пересчета децибел в проценты отношения:

В табл. 2 дан перевод некоторых, наиболее часто встречающихся значений децибел в проценты отношений. Различные промежуточные значения можно найти по номограмме на рис. 1.


Рис. 1. Перевод децибел в проценты отношений по номограмме

Таблица 2. Перевод децибел в проценты отношений

Рассмотрим два практических примера, поясняющих перевод процентного отношения в децибелы.

Пример 1. Какому уровню гармоник в децибелах по отношению к уровню сигнала основной частоты соответствует коэффициент нелинейных искажений в 3%?

Воспользуемся рис. 1. Через точку пересечения вертикальной линии 3% с графиком «напряжение» проведем горизонтальную линию до пересечения с вертикальной осью и получим ответ: –31 дБ.

Пример 2. Какому ослаблению напряжения в процентах соответствует его изменение на –6 дБ?

Ответ. На 50% первоначальной величины.

В практических расчетах дробную часть численного значения децибел часто округляют до целого числа, однако при этом в результаты расчетов вносится дополнительная погрешность.

ДЕЦИБЕЛЫ В РАДИОЭЛЕКТРОНИКЕ

Рассмотрим несколько примеров, поясняющих методику использования децибел в радиоэлектронике.

Затухание в кабеле

Потери энергии в линиях и кабелях на единицу длины характеризуются коэффициентом затухания α, который при равном входном и выходном сопротивлениях линии определяется в децибелах:

где U 1 - напряжение в произвольном сечении линии; U 2 - напряжение в другом сечении, отстоящем от первого на единицу длины: 1 м, 1 км и т. д. Например, высокочастотный кабель типа РК-75-4-14 имеет на частоте 100 МГц коэффициент затухания α, = –0,13 дБ/м, кабель витой пары категории 5 на той же частоте имеет затухание порядка –0,2 дБ/м, а у кабеля категории 6 несколько меньше. График затухания сигнала в неэкранированном кабеле витой пары показан на рис. 2.


Рис. 2. График затухания сигнала в неэкранированном кабеле витой пары

Оптоволоконные кабели имеют существенно более низкие величины затухания в диапазоне от 0,2 до 3 дБ при длине кабеля в 1000 м. Все оптические волокна имеют сложную зависимость затухания от длины волны, которая имеет три «окна прозрачности» 850 нм, 1300 нм и 1550 нм. «Окно прозрачности» означает наименьшие потери при максимальной дальности передачи сигнала. График затухания сигнала в оптоволоконных кабелях показан на рис. 3.


Рис. 3. График затухания сигнала в оптоволоконных кабелях

Пример 3. Найти, каким будет напряжение на выходе отрезка кабеля РК-75-4-14 длиной l = 50 м, если ко входу его приложено напряжение 8 В частоты 100 МГц. Сопротивление нагрузки и волновое сопротивление кабеля равны, или, как говорят, согласованы между собой.

Очевидно, что затухание, вносимое отрезком кабеля, составляет K = –0,13 дБ/м * 50 м = –6,5 дБ. Это значение децибел примерно соответствует отношению напряжений 0,47. Значит, напряжение на выходном конце кабеля U 2 = 8 В * 0,47 = 3,76 В.

Этот пример иллюстрирует очень важное положение: потери в линии или кабеле с ростом их длины возрастают чрезвычайно быстро. Для отрезка кабеля длиной в 1 км затухание составит уже –130 дБ, т. е. сигнал будет ослаблен более чем в триста тысяч раз!

Затухание в значительной мере зависит от частоты сигналов - в диапазоне звуковых частот оно будет гораздо меньше, чем в видео диапазоне, но логарифмический закон затухания будет тот же, и при большой длине линии ослабление будет существенным.

Усилители звуковой частоты

В усилители звуковой частоты с целью повышения их качественных показателей обычно вводится отрицательная обратная связь. Если коэффициент усиления устройства по напряжению без обратной связи равен К , а с обратной связью К ОС то число, показывающее, во сколько раз изменяется коэффициент усиления под действием обратной связи, называют глубиной обратной связи . Ее обычно выражают в децибелах. В работающем усилителе коэффициенты К и К ОС определяются экспериментально, если только усилитель не возбуждается при разомкнутой петле обратной связи. При проектировании усилителя сначала вычисляют К , а затем определяют значение К ОС следующим образом:

где β - коэффициент передачи цепи обратной связи, т. е. отношение напряжения на выходе цепи обратной связи к напряжению на ее входе.

Глубина обратной связи в децибелах может быть рассчитана по формуле:

Стереофонические устройства по сравнению с монофоническими должны удовлетворять дополнительным требованиям. Эффект объемного звучания обеспечивается только при хорошем разделении каналов, т. е. при отсутствии проникновения сигналов из одного канала в другой. В практических условиях это требование полностью удовлетворить не удается, и взаимное просачивание сигналов имеет место, главным образом, через узлы, общие для обоих каналов. Качество разделения по каналам характеризуется так называемым переходным затуханием а ПЗ Мерой переходного затухания в децибелах служит отношение выходных мощностей обоих каналов, когда входной сигнал подается только на один канал:

где Р Д - максимальная выходная мощность действующего канала; Р СВ - выходная мощность свободного канала.

Хорошему разделению каналов соответствует переходное затухание 60-70 дБ, отличному –90-100 дБ.

Шум и фон

На выходе любого приемно-усилительного устройства даже при отсутствии полезного входного сигнала можно обнаружить переменное напряжение, которое вызвано собственными шумами устройства. Причины, вызывающие собственные шумы, могут быть как внешними - за счет наводок, плохой фильтрации напряжения питания, так и внутренними, обусловленными собственными шумами радиокомпонентов. Сильнее всего сказываются шумы и, помехи, возникающие во входных цепях и в первом усилительном каскаде, так как они усиливаются всеми последующими каскадами. Собственные шумы ухудшают реальную чувствительность приемника или усилителя.

Количественная оценка шумов осуществляется несколькими способами.

Простейший состоит в том, что все шумы, независимо от причины и места их возникновения, пересчитываются ко входу, т. е. напряжение шумов на выходе (при отсутствии входного сигнала) делится на коэффициент усиления:

Это напряжение, выраженное в микровольтах, и служит мерой собственных шумов. Однако для оценки устройства с точки зрения помех важно не абсолютное значение шумов, а отношение между полезным сигналом и этим шумом (отношение сигнал/шум), так как полезный сигнал должен надежно выделяться на фоне помех. Отношение сигнал/шум обычно выражают в децибелах:

где Р с - заданная или номинальная выходная мощность полезного сигнала вместе с шумом; Р ш - выходная мощность шумов при выключенном источнике полезного сигнала; U c - напряжение сигнала и шумов на нагрузочном резисторе; U Ш - напряжение шумов на том же резисторе. Так получается т.н. «невзвешенное» («unweighted») отношение сигнал/шум.

Часто в параметрах аудиоаппаратуры приводится отношение сигнал/шум, измеренное со взвешивающим фильтром («weighted»). Фильтр позволяет учесть разную чувствительность слуха человека к шуму на разных частотах. Чаще всего используется фильтр типа А, в этом случае в обозначении обычно указывается единица измерения «дБА» («dBA»). Использование фильтра дает обычно лучшие количественные результаты, чем для невзвешенного шума (обычно отношение сигнал/шум получается на 6-9 дБ больше), поэтому (из маркетинговых соображений) производители аппаратуры чаще указывают именно «взвешенное» значение. Подробнее о взвешивающих фильтрах см. ниже в разделе «Шумомеры».

Очевидно, что для успешной эксплуатации устройства отношение сигнал/шум должно быть выше какого-то минимально допустимого значения, которое зависит от назначения и требований, предъявляемых к устройству. Для аппаратуры класса Hi-Fi этот параметр должен быть не менее 75 дБ, для аппаратуры Hi-End - не менее 90 дБ.

Иногда на практике пользуются обратным отношением, характеризуя им уровень шумов относительно полезного сигнала. Уровень шумов выражается тем же числом децибел, что и отношение сигнал/шум, но с отрицательным знаком.

В описаниях приемно-усилительной аппаратуры иногда фигурирует термин уровень фона, который характеризует в децибелах отношение составляющих напряжения фона к напряжению, соответствующему заданной номинальной мощности. Составляющие фона кратны частоте питающей сети (50, 100, 150 и 200 Гц) и при измерении выделяются из общего напряжения помех при помощи полосовых фильтров.

Отношение сигнал/шум не позволяет, однако, судить о том, какая часть шумов обусловлена непосредственно элементами схемы, а какая внесена в результате несовершенства конструкции (наводки, фон). Для оценки шумовых свойств радиокомпонентов вводится понятие коэффициента (фактора) шума . Коэффициент шума оценивается по мощности и также выражается в децибелах. Характеризовать этот параметр можно следующим образом. Если на входе устройства (приемника, усилителя) одновременно действуют полезный сигнал мощностью Р с и шумы мощностью Р ш , то отношение сигнал/шум на входе будет с ш )вх После усиления отношение с ш )вых окажется меньше, так как к входным шумам добавятся и усиленные собственные шумы усилительных каскадов.

Коэффициентом шума называют выраженное в децибелах отношение:

где К р - коэффициент усиления по мощности.

Следовательно, коэффициент шума представляет отношение мощности шумов на выходе к усиленной мощности шумов, действующих на входе.

Значение Рш.вх определяется расчетным путем; Рш.вых измеряется, а К р обычно. известно из расчета или после измерения. Идеальный с точки зрения шумов усилитель должен усиливать только полезные сигналы и не должен вносить дополнительные шумы. Как следует из уравнения, для подобного усилителя коэффициент шума F Ш = 0 дБ .

Для транзисторов и ИС, предназначенных для работы в первых каскадах усилительных устройств, коэффициент шума регламентируется и приводится в справочниках.

Напряжение собственных шумов определяет и другой важный параметр многих усилительных устройств - динамический диапазон.

Динамический диапазон и регулировки

Динамическим диапазоном называется выраженное в децибелах отношение максимальной неискаженной выходной мощности к ее минимальному значению, при котором, еще обеспечивается допустимое отношение сигнал/шум:

Чем меньше уровень собственных шумов и чем выше неискаженная выходная мощность, тем шире динамический диапазон.

Аналогичным образом определяется и динамический диапазон источников звука - оркестра, голоса, только здесь минимальная мощность звука определяется шумовым фоном. Чтобы устройство могло передать без искажений как минимальную, так и максимальную амплитуды входного сигнала, его динамический диапазон должен быть не меньше динамического диапазона сигнала. В случаях, когда динамический диапазон входного сигнала превышает динамический диапазон устройства, его искусственно сжимают. Так поступают, например, при звукозаписи.

Эффективность действия ручного регулятора громкости проверяется при двух крайних положениях регулятора. Сначала при регуляторе в положении максимальной громкости на вход усилителя звуковой частоты подается напряжение частотой 1 кГц такой величины, чтобы на выходе усилителя установилось напряжение, соответствующее некоторой заданной мощности. Затем ручку регулятора громкости переводят на минимальную громкость, а напряжение на входе усилителя поднимают до тех пор, пока напряжение на выходе снова не станет равным первоначальному. Отношение входного напряжения при регуляторе в положении минимальной громкости к входному напряжению при максимальной громкости, выраженное в децибелах, является показателем работы регулятора громкости.

Приведенными примерами далеко не исчерпываются практические случаи приложения децибел к оценке параметров радиоэлектронных устройств. Зная общие правила, применения этих единиц, можно понять, как они используются в других, не рассмотренных здесь условиях. Встретившись с незнакомым термином, определенным в децибелах, следует отчетливо представить, отношению каких двух величин он соответствует. В одних случаях это понятно из самого определения, в других случаях связь между составляющими сложнее, и, когда нет четкой ясности, следует обратиться к описанию методики измерения во избежание серьезных ошибок.

Оперируя с децибелами, следует всегда обращать внимание на то, отношению каких единиц - мощности или напряжения - соответствует каждый конкретный случай, т. е. какой коэффициент - 10 или 20 - должен стоять перед знаком логарифма.

ЛОГАРИФМИЧЕСКИЙ МАСШТАБ

Логарифмическая система, в том числе и децибелы, часто применяется при построении амплитудно-частотных характеристик (АЧХ) - кривых, изображающих зависимость коэффициента передачи различных устройств (усилителей, делителей, фильтров) от частоты внешнего воздействия. Для построения частотной характеристики расчетным или опытным путем определяется ряд точек, характеризующих выходное напряжение или мощность при неизменном входном напряжении на разных частотах. Плавная кривая, соединяющая эти точки, характеризует частотные свойства устройства или системы.

Если по оси частот численные значения откладывать в линейном масштабе, т. е. пропорционально их фактическим значениям, то такая частотная характеристика окажется неудобной для пользования и не будет наглядной: в области низших частот она сжата, а высших - растянута.

Частотные характеристики строятся обычно в так называемом логарифмическом масштабе. По оси частот в удобном для работы масштабе откладываются величины, пропорциональные не самой частоте f , а логарифму lgf/f o , где f о - частота, соответствующая началу отсчета. Против отметок на оси надписываются значения f . Для построения логарифмических АЧХ используют специальную логарифмическую миллиметровую бумагу.

При проведении теоретических расчетов обычно пользуются не просто частотой f , а величиной ω = 2πf которую называют круговой частотой.

Частота f о , соответствующая началу отсчета, может быть сколь угодно малой, но не может быть равной нулю.

По вертикальной оси откладываются в децибелах либо в относительных числах отношения коэффициентов передачи при различных частотах к его максимальному либо среднему значению.

Логарифмический масштаб позволяет на небольшом отрезке оси отобразить широкий диапазон частот. На такой оси одинаковым отношениям двух частот соответствуют равные по длине участки. Интервал, характеризующий рост частоты в десять раз, называют декадой ; двукратному отношению частот соответствует октава (этот термин заимствован из теории музыки).

Частотный диапазон с граничными частотами f H и f В занимает в декадах полосу f B /f H = 10m , где m - число декад, а в октавах 2 n , где n - число октав.

Если полоса в одну октаву слишком широка, то можно применять интервалы с меньшим отношением частот в пол-октавы или трети октавы.

Средняя частота октавы (полуоктава) не равна среднему арифметическому от нижней и верхней частот октавы, а равна 0,707 f В .

Частоты, найденные подобным образом, называют среднеквадратичными.

Для двух соседних октав средние частоты также образуют октавы. Пользуясь этим свойством, можно по желанию один и тот же логарифмический ряд частот считать либо границами октав, либо их средними частотами.

На бланках с логарифмической сеткой средняя частота делит октавный ряд пополам.

На оси частот в логарифмическом масштабе на каждую треть октавы приходятся равные отрезки оси, каждый длиной в одну треть октавы.

При испытаниях электроакустической аппаратуры и проведении акустических измерений рекомендуется применять ряд предпочтительных частот. Частоты этого ряда являются членами геометрической прогрессии со знаменателем 1,122. Для удобства значения некоторых частот округлены в пределах ±1%.

Интервал между рекомендованными частотами составляет одну шестую октавы. Сделано это не случайно: ряд содержит достаточно большой набор частот для разных видов измерений и вбирает ряды частот с интервалами в 1/3, 1/2 и целую октаву.

И еще одно важное свойство ряда предпочтительных частот. В некоторых случаях в качестве основного интервала частот используется не октава, а декада. Так вот, предпочтительный ряд частот в равной мере можно рассматривать и как двоичный (октавный), и как десятичный (декадный).

Знаменатель прогрессии, на основе которой построен предпочтительный ряд частот, численно равен 1дБ напряжения, или 1/2 дБ мощности.

ПРЕДСТАВЛЕНИЕ ИМЕНОВАННЫХ ЧИСЕЛ В ДЕЦИБЕЛАХ

До сих пор мы полагали, что и делимое и делитель под знаком логарифма имеют произвольную величину и для выполнения децибельного пересчета важно знать только их отношение независимо от абсолютных значений.

В децибелах можно выражать также конкретные значения мощностей, а также напряжений и токов. Когда величина одного из членов, стоящих под знаком логарифма в рассмотренных ранее формулах задана, второй член отношения и числа децибел будут однозначно определять друг друга. Следовательно, если задаться какой-либо эталонной мощностью (напряжением, током) в качестве условного уровня сравнения, то другой мощности (напряжению, току), сопоставляемой с ней, будет соответствовать строго определенное число децибел. Нулю децибел в этом случае отвечает мощность, равная мощности условного уровня сравнения, так как при N P = 0 Р 2 1 поэтому этот уровень обычно называют нулевым. Очевидно, что при разных нулевых уровнях одна и та же конкретная мощность (напряжение, ток) будут выражаться разными числами децибел.

где Р - мощность, подлежащая преобразованию в децибелы, а Р 0 - нулевой уровень мощности. Величина Р 0 ставится в знаменателе, при этом положительными децибелами выражаются мощности Р > Р 0 .

Условный уровень мощности, с которым производится сравнение, в принципе может быть любым, однако не каждый был бы удобен для практического использования. Чаще всего за нулевой уровень выбирается мощность в 1 мВт, рассеиваемая на резисторе сопротивлением 600 Ом. Выбор этих параметров произошел исторически: первоначально децибел как единица измерения появился в технике телефонной связи. Волновое сопротивление воздушных двухпроводных линий из меди близко к 600 Ом, а мощность в 1 мВт развивает без усиления высококачественный угольный телефонный микрофон на согласованном сопротивлении нагрузки.

Для случая, когда Р 0 = 1 мВт=10 –3 Вт: P р = 10 lg P + 30

Тот факт, что децибелы представляемого параметра отчитываются относительно определенного уровня, подчеркивают термином «уровень»: уровень помех, уровень мощности, уровень громкости

Пользуясь этой формулой, легко найти, что относительно нулевого уровня 1 мВт мощность 1 Вт определяется как 30 дБ, 1 кВт как 60 дБ, а 1 МВт - это 90 дБ, т. е. практически все мощности, с которыми приходится встречаться, укладываются в пределах первой сотни децибел. Мощности, меньшие 1 мВт, будут выражаться отрицательными числами децибел.

Децибелы, определенные относительно уровня 1 мВт, называют децибел-милливаттом и обозначают дБм или dBm. Наиболее распространенные значения нулевых уровней сведены в таблицу 3.

Аналогичным образом можно представить формулы для выражения в децибелах напряжений и токов:

где U и I - напряжение или ток, подлежащие преобразованию, a U 0 и I 0 - нулевые уровни этих параметров.

Тот факт, что децибелы представляемого параметра отчитываются относительно определенного уровня, подчеркивают термином «уровень»: уровень помех, уровень мощности, уровень громкости.

Чувствительность микрофонов , т. е. отношение выходного электрического сигнала к звуковому давлению, действующему на диафрагму, часто выражают в децибелах, сравнивая мощность, развиваемую микрофоном на номинальном нагрузочном сопротивлении, со стандартным нулевым уровнем мощности P 0 =1 мВт . Этот параметр микрофона носит название стандартного уровня чувствительности микрофона . Типовыми условиями испытания принято считать звуковое давление 1 Па частотой 1 кГц, нагрузочное сопротивление для динамического микрофона - 250 Ом.

Таблица 3. Нулевые уровни для измерения именованных чисел

Обозначение Описание
междунар. русское
dBс дБн опорным является уровень несущей частоты (англ. carrier) или основной гармоники в спектре; например, «уровень искажений составляет –60 дБн».
dBu дБu опорное напряжение 0,775 В, соответствующее мощности 1 мВт на нагрузке 600 Ом; например, стандартизованный уровень сигнала для профессионального аудио оборудования составляет +4 дБu, то есть 1,23 В.
dBV дБВ опорное напряжение 1 В на номинальной нагрузке (для бытовой техники обычно 47 кОм); например, стандартизованный уровень сигнала для бытового аудио оборудования составляет –10 дБВ, то есть 0,316 В
dBμV дБмкВ опорное напряжение 1мкВ; например, «чувствительность приёмника составляет –10дБмкВ».
dBm дБм опорная мощность 1мВт, соответствующая мощности 1 милливатт на номинальной нагрузке (в телефонии 600 Ом, для профессиональной техники обычно 10 кОм для частот менее 10МГц, 50 Ом для высокочастотных сигналов, 75 Ом для телевизионных сигналов); например, «чувствительность сотового телефона составляет –110 дБм»
dBm0 дБм0 опорная мощность в дБм в точке нулевого относительного уровня. dBm - опорное напряжение соответствует тепловому шуму идеального резистора сопротивлением 50 Ом при комнатной температуре в полосе 1 Гц. Например, «уровень шума усилителя составляет 6 дБм0»
dBFS
(англ. Full Scale - «полная шкала») опорное напряжение соответствует полной шкале прибора; например, «уровень записи составляет –6 dBfs»
dBSPL
(англ. Sound Pressure Level - «уровень звукового давления») - опорное звуковое давление 20 мкПа, соответствующее порогу слышимости; например, «громкость 100 dBSPL».
dBPa - опорное звуковое давление 1 Па или 94 дБ звуковой шкалы громкости dBSPL; например, «для громкости 6 dBPa микшером установили +4 dBu, а регулятором записи –3 dBFS, искажения при этом составили –70 dBc».
dBA, dBB,
dBC, dBD

опорные уровни выбраны в соответствии с частотными характеристиками стандартных «весовых фильтров» типа A, B, C или D cоответственно (фильтры отражают кривые равной громкости для разных условий, см. ниже в разделе «Шумомеры»)

Мощность, развиваемая динамическим микрофоном, естественно, чрезвычайно мала, гораздо меньше 1 мВт, и уровень чувствительности микрофона поэтому выражается отрицательными децибелами. Зная стандартный уровень чувствительности микрофона (он приводится в паспортных данных), можно вычислить его чувствительность в единицах напряжения.

В последние годы для характеристики электрических параметров радиоаппаратуры стали применять в качестве нулевых уровней и другие величины, в частности 1 пВт, 1 мкВ, 1 мкВ/м (последний - для оценки напряженности поля).

Иногда возникает необходимость пересчитать известный уровень мощности P Р или напряжения P U , заданные относительно одного нулевого уровня Р 01 (или U 01 ) на другой Р 02 (или U 02 ). Сделать это можно по следующей формуле:

Возможность представления в децибелах как отвлеченных, так и именованных чисел приводит к тому, что одно и то же устройство может характеризоваться разными числами децибел. Эту двойственность децибел надо иметь в виду. Защитой от ошибок тут может служить ясное понимание природы определяемого параметра.

Во избежание путаницы желательно указывать опорный уровень явно, например –20 дБ (относительно 0.775 B).

При пересчёте уровней мощностей в уровни напряжений и обратно надо обязательно учитывать сопротивление, являющиеся стандартным для данной задачи. В частности, дБВ для 75-омной ТВ-цепи соответствует (дБм–11дБ); дБмкВ для 75-омной ТВ-цепи соответствует (дБм+109дБ).

ДЕЦИБЕЛЫ В АКУСТИКЕ

До сих пор, говоря о децибелах, мы оперировали электрическими терминами - мощностью, напряжением, током, сопротивлением. Между тем логарифмические единицы широко применяют и в акустике, где они являются наиболее часто применяемой единицей при количественных оценках звуковых величин.

Звуковое давление р представляет избыточное давление в среде по отношению к постоянному давлению, существующему там до появления звуковых волн (единица измерения - паскаль (Па)).

Примером приемников звукового давления (или градиента звукового давления) может служить большинство типов современных микрофонов, которые преобразуют это давление в пропорциональные электрические сигналы.

Интенсивность звука связана со звуковым давлением и колебательной скоростью частиц воздуха простой зависимостью:

J=pv

Если звуковая волна распространяется в свободном пространстве, где нет отражения звука, то

v=p/(ρc)

здесь ρ - плотность среды, кг/м3; с - скорость звука в среде, м/с. Произведение ρc характеризует среду, в которой происходит распространение звуковой энергии, и называется ее удельным акустическим сопротивлением . Для воздуха при нормальном атмосферном давлении и температуре 20° С ρc =420 кг/м2*с; для воды ρc = 1,5*106 кг/м2*с.

Можно записать, что:

J=р 2 / (ρс)

все, что говорилось о преобразовании в децибелы электрических величин, в равной мере относится и к акустическим явлениям

Если сопоставить эти формулы с формулами, выведенными ранее для мощности. тока, напряжения и сопротивления, то легко обнаружить аналогию между отдельными понятиями, характеризующими электрические и акустические явления, и уравнениями, описывающими количественные зависимости между ними.

Таблица 4. Связь между электрическими и акустическими характеристиками

Аналогом электрической мощности являются акустическая мощность и интенсивность звука; аналогом напряжения служит звуковое давление; электрический ток соответствует колебательной скорости, а электрическое сопротивление - удельному акустическому сопротивлению. По аналогии с законом Ома для электрической цепи можно говорить об акустическом законе Ома. Следовательно, все, что говорилось о преобразовании в децибелы электрических величин, в равной мере относится и к акустическим явлениям.

Применение децибел в акустике очень удобно. Интенсивности звуков, с которыми приходится иметь дело в современных условиях, могут различаться в сотни миллионов раз. Такой огромный диапазон изменений акустических величин создает большие неудобства при сопоставлении их абсолютных значений, а при использовании логарифмических единиц эта проблема снимается. Кроме того, установлено, что громкость звука при оценке ее на слух возрастает примерно пропорционально логарифму интенсивности звука. Таким образом, уровни этих величин, выраженные в децибелах, довольно близко соответствуют громкости, воспринимаемой ухом. Для большинства людей с нормальным слухом изменение громкости звука частотой 1 кГц ощущается при изменении интенсивности звука примерно на 26%, т. е. на 1 дБ.

В акустике по аналогии с электротехникой определение децибел базируется на отношении двух мощностей:

где J 2 и J 1 - акустические мощности двух произвольных источников звука.

Подобным же образом в децибелах выражается отношение двух интенсивностей звука:

Последнее уравнение справедливо только при условии равенства акустических сопротивлений, другими словами, постоянства физических параметров среды, в которой распространяются звуковые волны.

Децибелы, определенные по приведенным выше формулам, не связаны с абсолютными значениями акустических величин и применяются для оценки затухания звука, например эффективности звуковой изоляции и систем подавления и заглушения шумов. Подобным образом выражаются и неравномерности частотных характеристик, т. е. разность максимального и минимального значений в заданном диапазоне частот различных излучателей и приемников звука: микрофонов, громкоговорителей и пр. Отсчет при этом обычно ведется от среднего значения рассматриваемой величины, либо (при работе в звуковом диапазоне) относительно значения при частоте 1 кГц.

В практике акустических измерений, однако, как правило, приходится иметь дело со звуками, значения которых должны быть выражены конкретными числами. Аппаратура для проведения акустических измерений сложнее аппаратуры для электрических измерений, а по точности существенно уступает ей. С целью упрощения техники измерений и снижения погрешности в акустике отдается предпочтение измерениям относительно эталонных, калиброванных уровней, величины которых известны. С этой же целью для измерения и исследования акустических сигналов их преобразуют в электрические.

Абсолютные значения мощностей, интенсивностей звуков и звуковых давлений также могут быть выражены в децибелах, если в приведенных выше формулах задаваться значениями одного из членов под знаком логарифма. Международным соглашением уровнем отсчета интенсивности звука (нулевым уровнем) принято считать J 0 = 10 –12 Вт/м 2 . Эту ничтожную интенсивность, под действием которой амплитуда колебаний барабанной перепонки меньше размеров атома, условно принято считать порогом слышимости уха в области частот наибольшей чувствительности слуха. Ясно, что все слышимые звуки выражаются относительно этого уровня только положительными децибелами. Фактический порог слышимости для людей с нормальным слухом немного выше и равен 5-10 дБ.

Для представления интенсивности звука в децибелах относительно заданного уровня используют формулу:

Значение интенсивности, вычисленное по этой формуле, принято называть уровнем интенсивности звука .

Подобным образом можно выразить и уровень звукового давления:

Чтобы уровни интенсивности звука и звукового давления в децибелах численно выражались одной величиной, в качестве нулевого уровня звукового давления (порога звукового давления) должно быть принято значение:

Пример. Определим, какой уровень интенсивности в децибелах создает оркестр со звуковой мощностью 10 Вт на расстоянии r = 15 м.

Интенсивность звука на расстоянии r = 15 м от источника составит:

Уровень интенсивности в децибелах:

Тот же результат будет получен, если преобразовать в децибелы не уровень интенсивности, а уровень звукового давления.

Так как в месте приема звука уровень интенсивности звука и уровень звукового давления выражаются одинаковым числом децибел, на практике часто применяется термин «уровень в децибелах» без указания, к какому именно параметру эти децибелы относятся.

Определив уровень интенсивности в децибелах в какой-либо точке пространства на расстоянии r 1 от источника звука (расчетным или опытным путем), нетрудно вычислить уровень интенсивности на расстоянии r 2 :

Если на приемник звука одновременно воздействуют два или несколько источников звука и известна интенсивность звука в децибелах, создаваемая каждым из них, то для определения результирующей величины децибелы следует обратить в абсолютные значения интенсивности (Вт/м2), сложить их, и эту сумму снова преобразовать в децибелы. Складывать сразу децибелы в этом случае нельзя, так как это соответствовало бы произведению абсолютных значений интенсивностей.

Если имеется n несколько одинаковых источников звука с уровнем каждого L J , то их суммарный уровень будет:

Если уровень интенсивности одного источника звука превышает уровни остальных на 8-10 дБ и более, можно учитывать только один этот источник, а действием остальных пренебречь.

Помимо рассмотренных акустических, уровней иногда можно встретить и понятие уровня звуковой мощности источника звука, определяемого по формуле:

где Р - звуковая мощность характеризуемого произвольного источника звука, Вт; Р 0 - начальная (пороговая) звуковая мощность, величина которой берется обычно равной P 0 =10 –12 Вт.

УРОВНИ ГРОМКОСТИ

Чувствительность уха к звукам разных частот различна. Зависимость эта довольно сложна. При небольших уровнях интенсивности звука (примерно до 70 дБ) максимальная чувствительность составляет 2-5 кГц и убывает с повышением и понижением частоты. Поэтому звуки одинаковой интенсивности, но разных частот будут казаться на слух разными по громкости. С ростом силы звука частотная характеристика уха выравнивается и при больших уровнях интенсивности (80 дБ и выше) ухо реагирует приблизительно одинаково на звуки разных частот звукового диапазона. Из этого следует, что интенсивность звука, которая измеряется специальными широкополосными приборами, и громкость, которая фиксируется ухом, - понятия не равнозначные.

Уровень громкости звука любой частоты характеризуется величиной уровня равного по громкости звука частотой 1 кГц

Уровень громкости звука любой частоты характеризуется величиной уровня равного по громкости звука частотой 1 кГц. Уровни громкости характеризуются так называемыми кривыми равных громкостей, каждая из которых показывает, какой уровень интенсивности на разных частотах должен развить источник звука, чтобы создать впечатление равной громкости с тоном 1 кГц заданной интенсивности (рис. 4).


Рис. 4. Кривые равной громкости

Кривые равной громкости представляют по существу семейство частотных характеристик уха в децибельном масштабе для разных уровней интенсивности. Отличие их от обычных АЧХ состоит лишь в способе построения: «завал» характеристики, т. е. снижение коэффициента передачи, здесь изображен повышением, а не понижением соответствующего участка кривой.

Единице, характеризующей уровень громкости, во избежание путаницы с децибелами интенсивности и звукового давления присвоено особое наименование - фон .

Уровень громкости звука в фонах численно равен уровню звукового давления в децибелах чистого тона с частотой 1 кГц, равного с ним по громкости.

Другими словами, один фон - это 1 дБ звукового давления тона частотой 1 кГц с поправкой на частотную характеристику уха. Между двумя, этими единицами нет постоянного соотношения: оно меняется в зависимости от уровня громкости сигнала и его частоты. Только для токов частотой 1 кГц численные значения для уровня громкости в фонах и уровня интенсивности в децибелах совпадают.

Если обратиться к рис. 4 и проследить ход одной из кривых, например, для уровня 60 фон, то нетрудно определить, что для обеспечения равной громкости с тоном 1 кГц на частоте 63 Гц требуется интенсивность звука 75 дБ, а на частоте 125 Гц только 65 дБ.

В высококачественных усилителях звуковой частоты применяются ручные регуляторы громкости с тонкомпенсацией, или, как их еще называют, компенсированные регуляторы. Такие регуляторы одновременно с регулировкой величины входного сигнала в сторону уменьшения обеспечивают подъем частотной характеристики в области низших частот, благодаря чему для слуха создается неизменный тембр звучания при различных громкостях воспроизведения звука.

Исследованиями установлено также, что изменение громкости звука вдвое (по оценке на слух) примерно эквивалентно изменению уровня громкости на 10 фон. Эта зависимость положена в основу оценки громкости звука. За единицу громкости, называемую сон , условно принят уровень громкости 40 фон. Удвоенной громкости, равной двум сон, соответствует 50 фон, четырем сон - 60 фон и т. д. Пересчет уровней громкости в единицы громкости облегчается графиком на рис. 5.


Рис. 5. Связь между громкостью и уровнем громкости

Большинство звуков, с которыми приходится иметь дело в повседневной жизни, имеют шумовой характер. Характеристика громкости шумов на основе сопоставления с чистыми тонами 1 кГц проста, но приводит к тому, что оценка шума на слух может расходиться с показаниями измерительных приборов. Объясняется это тем, что при равных уровнях громкости шума (в фонах) наиболее раздражающее действие на человека оказывают составляющие шума в диапазоне 3-5 кГц. Шумы могут восприниматься как равно неприятные, хотя их уровни громкости не равны.

Раздражающее действие шума более точно оценивается другим параметром, так называемым уровнем воспринимаемого шума . Мерой воспринимаемого шума служит уровень звука равномерного шума в октавной полосе со средней частотой 1 кГц, который в заданных условиях оценивается слушателем как одинаково неприятный с измеряемым шумом. Уровни воспринимаемого шума характеризуются единицами PNdB или РNдБ. Расчет их ведется по специальной методике.

Дальнейшим развитием системы оценки шумов являются так называемые эффективные уровни воспринимаемого шума, выражаемые в ЕРNдБ. Система ЕРNдБ позволяет комплексно оценивать характер воздействующего шума: частотный состав, дискретные составляющие в его спектре, а также продолжительность шумового воздействия.

По аналогии с единицей громкости сон введена единица шумности - ной .

За один ной принята шумность равномерного шума в полосе 910-1090 Гц при уровне звукового давления 40 дБ. В остальном нои сходны с сонами: рост шумности вдвое соответствует росту уровня воспринимаемого шума на 10 РNдБ, т. е. 2 ной = 50 РNдБ, 4 ной = 60 РNдБ и т. д.

Работая с акустическими понятиями, следует иметь в виду, что интенсивность звука представляет объективное физическое явление, которое может быть точно определено и измерено. Оно реально существует независимо от того, слышит его кто-нибудь или нет. Громкость звука определяет эффект, который звук производит на слушателя, и является, поэтому, чисто субъективным понятием, так как зависит от состояния органов слуха человека и его личных свойств к восприятию звука.

ШУМОМЕРЫ

Для измерения всевозможных шумовых характеристик применяют специальные приборы - шумомеры. Шумомер представляет автономный переносный прибор, позволяющий измерять непосредственно в децибелах уровни интенсивности звука в широких пределах относительно стандартных уровней.

Шумомер (рис. 6) состоит из высококачественного микрофона, широкополосного усилителя, переключателя чувствительности, меняющего усиление ступенями по 10 дБ, переключателя частотных характеристик и графического индикатора, который обычно обеспечивает несколько вариантов представления измеряемых данных - от цифр и таблицы до графика.


Рис. 6. Портативный цифровой шумомер

Современные шумомеры весьма компактны, что позволяет производить измерения и в труднодоступных местах. Из отечественных шумомеров можно назвать прибор компании «Октава-Электродизайн» «Октава-110А» (http://www.octava.info/?q=catalog/soundvibro/slm) .

Шумомеры позволяют определять как общие уровни интенсивностей звука при измерениях с линейной частотной характеристикой, так и уровни громкости звука в фонах при измерениях с частотными характеристиками, сходными с характеристиками человеческого уха. Диапазон измерений уровней звуковых давлений находится обычно в пределах от 20-30 до 130-140 дБ относительно стандартного уровня звукового давления 2*10–5 Па. С помощью сменных микрофонов уровень измерений может быть расширен до 180 дБ.

В зависимости от метрологических параметров и технических характеристик отечественные шумомеры подразделяются на первый и второй классы.

Частотные характеристики всего тракта шумомера, включая микрофон, стандартизированы. Всего имеется пять частотных характеристик. Одна из них линейна в пределах всего рабочего диапазона частот (условное обозначение Лин ), четыре другие приближенно повторяют характеристики уха человека для чистых тонов при разных уровнях громкости. Они названы первыми буквами латинского алфавита А, В, С и D . Вид этих характеристик показан на рис. 7. Переключатель частотных характеристик не зависит от переключателя пределов измерений. Для шумомеров первого класса обязательны характеристики А, В, С и Лин . Частотная характеристика D - дополнительная. Шумомеры второго класса должны иметь характеристики А и С ; применение остальных допускается.


Рис. 7. Стандартные частотные характеристики шумомеров

Характеристика А имитирует ухо примерно на уровне 40 фон. Эта характеристика используется при измерении слабых шумов - до 55 дБ и при замерах уровней громкости. В практических условиях чаще всего пользуются частотной характеристикой с коррекцией А . Объясняется это тем, что, хотя восприятие звука человеком гораздо сложнее простой частотной зависимости, определяющей характеристику А , во многих случаях результаты измерений прибором хорошо согласуются с оценкой шума на слух при небольших уровнях громкости. Многими стандартами - отечественными и зарубежными - оценку шумов рекомендуется проводить по характеристике А независимо от фактического уровня интенсивности звука.

Характеристика В повторяет характеристику уха на уровне 70 фон. Она применяется при измерении шумов в пределах 55-85 дБ.

Характеристика С равномерна в диапазоне 40-8000 Гц. Этой характеристикой пользуются при измерении значительных уровней громкости - от 85 фон и выше, при измерениях уровней звукового давления - независимо от пределов измерения, а также при подключениях к шумомеру устройств для измерения спектрального состава шума в тех случаях, когда шумомер не имеет частотной характеристики Лин .

Характеристика D - вспомогательная. Она представляет усредненную характеристику уха примерно на уровне 80 фон с учетом повышения его чувствительности в полосе от 1,5 до 8 кГц. При пользовании этой характеристикой показания шумомера более точно, чем по другим характеристикам, соответствуют уровню воспринимаемого шума человеком. Эта характеристика применяется главным образом при оценке раздражающего действия шума большой интенсивности (самолетов, быстроходных машин и т. п.).

В составе шумомера имеется также переключатель Быстро - Медленно - Импульс , управляющий временными характеристиками прибора. Когда переключатель установлен в положение Быстро , прибор успевает следить за быстрыми изменениями уровней звука, в положении Медленно прибор показывает среднее значение измеряемого шума. Временная характеристика Импульс применяется при регистрации коротких звуковых импульсов. Некоторые типы шумомеров содержат также интегратор с постоянной времени 35 мс, имитирующий инерционность звуковосприятия человека.

При пользовании шумомером результаты измерений будут различаться в зависимости от установленной частотной характеристики. Поэтому при записи показаний для исключения путаницы указывается и вид характеристики, при которой производились измерения: дБ (А ), дБ (В ), дБ (С ) или дБ (D ).

Для калибровки всего тракта микрофон - измеритель в комплект шумомера обычно входит акустический калибратор, назначение которого - создавать равномерный шум определенного уровня.

Согласно действующей в настоящее время инструкции «Санитарные нормы допустимого шума в помещениях жилых и общественных зданий и на территории жилой застройки» нормируемыми параметрами постоянного или прерывистого шума являются уровни звуковых давлений (в децибелах) в октавных полосах частот со средними частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Для непостоянного шума, например шума от проезжающего транспорта, нормируемым параметром является уровень звука в дБ(А ).

Установлены следующие суммарные уровни звука, измеренные по шкале А шумомера: жилые помещения - 30 дБ, аудитории и классы учебных заведений - 40 дБ, территории жилой застройки и площадки отдыха - 45 дБ, рабочие помещения административных зданий - 50 дБ (А ).

Для санитарной оценки уровня шума в показания шумомера вносятся поправки от –5 дБ до +10 дБ, которые учитывают характер шума, суммарное время его действия, время суток и месторасположение объекта. Например, в дневное время норма допустимого шума в жилых помещениях с учетом поправки составляет 40 дБ.

В зависимости от спектрального состава шума ориентировочная норма предельно допустимых уровней, дБ, характеризуется следующими цифрами:

Высокочастотный от 800 Гц и выше 75-85
Среднечастотный 300-800 Гц 85-90
Низкочастотный ниже 300 Гц 90-100

При отсутствии шумомера ориентировочную оценку уровней громкости различных шумов можно проводить с помощью таблицы. 5.

Таблица 5. Шумы и их оценка

Оценка громкости
на слух
Уровень
шума, дБ
Источник и место измерения шума
Оглушительный 160 Повреждение барабанной перепонки.
140-170 Реактивные двигатели (вблизи).
140 Предел терпимости к шуму.
130 Болевой порог (звук воспринимается как боль); поршневые авиадвигатели(2-3 м).
120 Гром над головой.
110 Быстроходные мощные двигатели (2-3 м); клепальная машина (2-3 м); очень шумный цех.
Очень громкий 100 Симфонический оркестр (пики громкости); деревообрабатывающие станки (на рабочем месте)
90 Уличный громкоговоритель; шумная улица; металлорежущие станки (на рабочем месте).
80 Радиоприемник громко (2 м)
Громкий 70 Салон автобуса; крик; свисток милиционера (15 м); улица средней шумности; шумный офис; зал большого магазина
Умеренный 60 Спокойный разговор (1 м).
50 Легковая машина (10-15 м); спокойный офис; жилое помещение.
Слабый 40 Шепот; читальный зал.
60 Шелест бумаги.
20 Больничная палата.
Очень слабый
10 Тихий сад; студия радиоцентра.
0 Порог слышимости
1 А. Белл - американский учёный, изобретатель и бизнесмен шотландского происхождения, основоположник телефонии, основатель компании Bell Telephone Company, определившей развитие телекоммуникационной отрасли в США.
2 Логарифмы отрицательных чисел являются комплексными числами и далее рассматриваться не будут.

Для начинающих несколько слов о не понятных для многих единицах измерения принятых в антенной технике и радиотехнике высоких частот.

    dBm (дБм). Иногда удобно какую либо величину принять за эталон (нулевой уровень) и относительно ее измерять уровень уже в децибелах. Так, если принять за нулевой уровень - 1мВт и относительно его измерять мощность по логарифмической децибельной шкале, то появляется такая единица измерения как дБм(1мВт = 0 дБм). Она уже имеет вполне весомый физический смысл, в отличии от безличных децибелов, dBm - это мера мощности. В ней измеряют уровень слабых сигналов (в том же «палкомере» модема), чувствительность приемников, мощность передатчиков и т.п. Например уровень в 50 мкВ на 50-омном входе приемника соответствует уровню мощности 5·10 -8 мВт или -73 дБм. Измерять чувствительность в единицах мощности более удобно, чем в единицах напряжения, так так нам приходится иметь дело с сигналами разной формы, в том числе шумовыми. К тому же, мы избавляемся от необходимости каждый раз уточнять, каково входное сопротивление приемника. Например, пороговая мощность большинства "свистков", при которой они еще коннектятся с базовой станцией около -110 dBm. Мощность передатчика тоже можно измерять в dBm. Например мощность Wi Fi роутера в 100 мВт равна 20 dbm. Можно воспользоваться нашим онлайн калькулятором для перевода мВт в дБм и обратно . Во многих устройствах вы обнаружите уровень сигнала в asu . Это еще одна единица измерения уровня сигнала, призваная вогнать в ступор анонима своей непонятностью. Расшифровывается - "Arbitrary Strength Unit" - усредненная единица уровня сигнала. Дело в том, что в разных диапазонах мы используем каналы с разной модуляцией, разной полосой частот и т.п. Поэтому равные dBm в 3G и 4G - не эквивалентны одинаковой чувствительности по отношению сигнал/шум в канале. Чтобы привести чувствительность к единому знаменателю придумали asu . Связь между asu и dBm для разных диапазонов следующая:

    • GSM : dBm = 2 × ASU - 113 , ASU в диапазоне значений 0..31 и 99 (сеть не определена).
    • UMTS : dBm = ASU - 116 , ASU в диапазоне значений -5..91 и 255 (сеть не определена).
    • LTE : (ASU - 141) ≤ dBm < (ASU - 140)
  • dBi (дБи). Единица измерения усиления антенн относительно «эталонной» антенны. За такую эталонную антенну принят так называемый изотропный излучатель - идеальная антенна, диаграмма направленности которой представляет собой сферу, коэффициент усиления которой равен единице и КПД которой равен 100%. Излучение сигнала таким излучателем происходит с равномерной интенсивностью во все стороны. Такой антенны в природе не существует, это виртуальный объект, однако, очень удобный в качестве эталона для измерения параметров реальных антенн. Существует еще одна единица: dBd - здесь за эталон принят полуволновой диполь. Однако, использование dBi предпочтительнее, т.к. в этом случае проще расчет энергетического баланса трассы радиосвязи. dBi - это относительная единица, ничем по сути от простого децибела не отличима, кроме определения эталона, относительно которого и идет отсчет. Принципиальной разницы между dBi и dBd нет - усиление в dBi = усилению в dBd + 2.15 dB . В старых радиолюбительских книжках и журналах усиление антенн измеряют просто в децибелах. В этом случае чаще всего имеется ввиду усиление относительно полуволнового вибратора, т.е. оно эквивалентно dBd . Измерение относительно изотропного излучателя изначально использовалось только в США, но в последнее время распространилось во всем мире, поэтому во избежании путаницы сейчас, если речь идет об усилении антенны, правилом хорошего тона считается использование децибела с суффиксом - dBi или dBd.

В принципе за «нулевой уровень» можно принять любую величину. Так на свет появляются такие звери как "дБмкВ" (напряжение - отношение к одному микровольту), "дБВт" (мощность - отношение к одному ватту). В акустике за нулевой уровень звука принято звуковое давление 2·10 -5 Па - порог слышимости. При этом там не стали заморачиваться с довеском к «дБ», а прямо так и измеряют уровень звука в децибелах. Так сложилось исторически, потому что децибелы впервые применялись именно в области акустики. Но надо иметь ввиду - это как бы не «чистые» относительные децибелы, а «звуковые» - абсолютные. Например, шум реактивного самолета с расстояния 25 м равен 140 дБ, а 0 дБ - это порог слышимости. Часто можно встретить единицу под именем dBA . Она специально придумана для измерений интенсивности шумов. Величина дБА - уровень звукового давления, измеренный в "звуковых" децибелах при помощи шумомера, содержащего корректирующую цепочку, имитирующую чувствительность человеческого уха, что дает возможность получать отсчеты более соответствующие реальной слышимости шума.

Вообще, люди начали использовать децибелы для измерения различных вещей не просто так. Еще в XIX веке психофизиологами Эрнстом Вебером и Густавом Фехнером было установлено, что “сила ощущения p пропорциональна логарифму интенсивности раздражителя S”. Это относится к звуку, освещенности, тактильным ощущениям.
В технике проводной связи используют другую единицу - Непер. Неперы определяются не через десятичный, а через натуральный логарифм. Может это и правильнее, ведь многие законы природы основаны на числе Эйлера, которое является основанием натурального логарифма. Но все-таки мы пользуемся децибелами. (1 непер = 8,686 дБ)

При расчетах все эти dB, dBi, dBm по сути своей все являются децибелами, т.е. суммируются (если усиление) или вычитаются (если затухание), но dBm имеет приоритет как мера мощности сигнала. Например:

Уровень на входе приемника(dBm) = Мощность передатчика(dBm) + Усиление антенн(dBi) - Ослабление сигнала(dB)

Неискушенный аноним обычно теряется при виде такого изобилия разновидностей децибел. Но затем приходит понимание, что это приносит упрощение в расчетах. Например в расчете дальности связи Wi-Fi . Многим трудно наглядно представить себе «децибельную» шкалу, особенно в отрицательной области. На самом деле это легко сделать по аналогии с привычным всем термометром. Чем выше мощность в dBm, тем «теплее» цифра. Другими словами -75dBm больше (выше по шкале, «теплее»), чем -95dBm. Более отрицательная цифра в параметре чувствительностии означает, что приемник способен принять более слабый (холодный) сигнал.

Вот так оно все запутано в этом децибельном царстве. И напоследок... Имейте ввиду, что децибел и имбецил совершенно разные понятия.

Контест - это не обязанность, это праздник. К тому же замечательное время сюрпризов. Никогда не знаешь, какой новый префикс тебе подарит судьба. Привожу причину, побудившую меня коснуться этой темы - письмо. Одним словом цитирую: "Приветствую Вас Георгий! Это Андрей (UR5XMM). Спасибо за интересные статьи и заметки на ваших сайтах http://ham.cn.ua и http://gosh-radist.blogspot.com/ !!! Очень интересно и приятно читать!!! Вот уже наступила осень и настало прекрасное время CQ WW контестов. Мне, как начинающему, интересно услышать истории и советы более опытных коротковолновиков по поводу подготовки тестам... . ... может быть что-то мне подскажете,как начинающему. Как подготавливаете себя,в смысле морально, сколько часов спать лучше, и когда ложиться когда вставать. Время и длительность перерыва. На каком диапазоне начинаете работать в тесте. Какой софт используете чаще всего. От себя добавлю, сейчас перешел на 5MContest - замечательная программа, как для меня. Интересует также где работаете во время санрайза и сансета (диапазон). Когда лучше кого брать из каких направлений. Особенно интересует проход на 21, 28 Мгц,так как там у меня еще очень мало связей проведено, естественно и нету опыта.У Вас наверно уже есть много опыта по этим вопросам. Что употребляете в пищу? Утром, ночью, перед тестом,и вечером перед сном. Чай кофе пиво и т.д. Мне просто интересно узнать как другие готовятся к таким тестам. Хочется набраться опыта у более старших коллег."

Вот пожалуй опыт - это единственное, что можно перенять у стариков... :-) И то осторожно.

  • Бюджетный антишок для микрофона

    В продолжение темы любви к сантехническим пластмассам......

    Я вообще-то не любитель SSB, но когда у меня появился трансивер с нормальным трактом формирования SSB сигнала и эквалайзером, я мог бы попробовать звучать с надлежащим качеством. Но уже первое включение моего настольного Icom SM50 поставило меня на место (на колени:-) Помимо шума вентилятора Icomа, через поверхность стола передавался и механический (потому что БП стоит на одной из полок этого стола) фон 50 Гц. До сегодняшнего дня микрофон стоит на двух поролоновых матрасах разной плотности, но, по большому счёту, проблема решена не полностью.

  • Пора заводить старшину

    Вчерашний вечер прошёл в испытаниях новой конфигурации онлайн SDR сервера с тремя приёмниками. Но пока включил, три раза помянул незлым тихим словом свой недалёкий ум: компьютеры есть, антенны есть, приёмники есть, а шнурков не хватает. Помнится раньше обо всём заботилась мама, потом старшина роты, потом старшина узла, потом жена..... Вот о её позывном позаботился, а добиться того чтобы она следила за достаточным количеством кабелей и переходников не смог:-(Одним словом чтобы дотянуть антенну на 435 мгц до SDRа пришлось городить вот такое. Я бы назвал это извращением, если бы это происходило не со мной:-) До проводочка непосредственно уходящего наверх в антенну насчитал 6 соединений и три отрезка неизвестно какого кабеля. По науке каждый разъём "съедает" 2-3 дБ. Интересно, что же я слушаю? Счастье моё что эту кучу переходников забыл у меня в прошлом году Володя Джулай (UY2UA), который привозил свой новый SDR трансивер
    Но по качеству приёма новые DVBT2 V3 оказались

  • Эхолинк. Ликбез.

    Продолжают поступать вопросы по эхолинку. Собрал их в кучу и отвечаю. Те кто всё про это знает могут отдохнуть:) Посмотреть субботнюю карамель:-) Итак эхолинк - это костыль, который с помощью интернета помогает решить проблему "последней мили" на УКВ, подтянуть к островам радиолюбительской цивилизации тех у кого не хватает возможностей для постоянного и стабильного общения с окружающими радиолюбителями по радио и про радио. Эхолинк это радио, которое с помощью адаптера (очень похоже на CAT, конкретно у нас вообще Tiny TI) принимает/передаёт на УКВ, заталкивает/распаковывает это в интернете и там же осуществляет адресацию: выбор континента, страны, региона и конкретного города (или области). Очень часто эхолинк "заряжают" в репитерный канал и так же часто организовывают конференцию(сообщество) в интернете. Рассмотрим всё пошагово для смартфонов. На PC внешний вид будет другой, но технология (идеология меню) будет такая же.

  • PTT с компа на Воки-Токи

    Как научить свой компьютер обмениваться пакетами via радио из Космоса? Легко. Для этого вполне достаточно средненькой антенны и простого УКВ FM радио любого типа. В том числе и walkie-talkie. Лишь бы принимал и предавал на частоте 145825. Конечно, потребуется и компьютер, который будет декодировать (и посылать) пакеты и переводить на передачу наше радио. Как правило, переключение с приёма на передачу осуществляется через COM порт. Так, например, работает популярная в нашей радиолюбительской среде MIXW и чуть более специализированная UISS by ON6MU . Как раз для работы через космический диджипитер она подходит больше, потому что "заточена" как раз для этого: вся система команд ориентирована на использование APRS, BBS RS0ISS и работы в обычном режиме через два работающих шлюза: RS0ISS и RS0ISS-4. Посколько работа программы MIXW описана достаточно хорошо, думаю больше пользы будет если я опишу как пользоваться УИССом. Для начала, конечно, следует

  • Сегодня мои автоматические "подслушиватели" сказали мне что есть возможность подтвердить новую страну через диджик МКС - Израиль. Приятно видеть что география пользователей космических ретрансляторов расширяется. И правда можно выполнить DXCC:-) Уши мои и саундкарта были заняты с приёмом Tigrisat, но техника справилась и без меня:-) Суть совета - автоматизируйте процесс с помощью парочки Орбитрон-SharpSDR.

    Port3 MFJ-1278>COM3: IDLE
    Fm 4Z4DP To APWW10 Via RS0ISS*
    :ALL:Have a nice week , 73 de Dovid
    Fm RS0ISS To CQ
    >ARISS - International Space Station

  • Прохождение на три дня

    Думаю не надо напоминать присказку про тяготы утра начала недели...... Капиталисты, те хоть умеют подсластить свою пилюлю - у них неделя начинается с воскресенья:-) А у нас, славян, "как пел Лемешев "утро туманное, утро седое"..... Глядя в кластер понимаешь что живешь на этом свете уже слишком долго: DX территории есть и в кластере и в эфире, а поработать не с кем - всё уже DUPE! Утешение одно - тех, кто в телеграфе, не раздражает лишний раз дать "5NN" :-) Главное при этом не начать рассказывать про свои антенны - ни одной лишней точки:-) Я в последнее время работаю так как на аудио - TR8CA, CW, 14 mHz
    Прохождение в точности соответствует прогнозу и удерживается таковым уже три недели. Из-за позднего потепления над Европой слой D ведёт себя нестандартно. "Тормозит", а еще точнее, "не идёт за Солнцем". Вот, для начала, прогноз на десятку. Радует, не правда ли:-(Но при всём этом в течении дня открываются не пргнозируемые никак временные "окна" на час, максимум полтора подряд, в которые есть хорошее прохождение на участки освещенные Солнцем. Очевидно "дырки" в слое D. Нужно следить за кластером или, как делаю я, контролировать CB радио каналы, где активны дальнобойщики. Как начнёт "хлопать" сквэлш - значит есть прохождение на десятке.

  • ← Вернуться

    ×
    Вступай в сообщество «mobcredit.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «mobcredit.ru»